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A NUMERICAL METHOD TO DETERMINE THE OPTIMAL STOPPING

BOUNDARY FOR INSTALLMENT OPTION

KARIM IVAZ1, ALI BEIRANVAND1

Abstract. In this paper we consider the European continuous installment call option on foreign

currency exchange rate as underlying asset. Using the Black-Scholes model as the underlying

asset model and applying arbitrage pricing theory, we get the parabolic partial differential

equation governing the value of installment option. Then, to determine the location of the

stopping boundary and the value of the European installment option, the front fixing method

will be applied.
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1. Introduction

Since the papers by Black-Schloes [8] and Merton [29], financial mathematics became one of

the most important field of research. From that time many financial instruments have been

introduced to financial industry and markets. One of these instrument is installments option.

Installment option is a type of security in which instead of paying lump sum up front, the

premium is paid over the life of the option. Thus the holder has the right to terminate the

contract at any time prior to maturity. Based on the net present value of contract the holder

makes decision to continue or stop the payments. Hence the owner will continue to pay future

installments if the option worth the net present value of the remained payments. Otherwise the

holder allows the contract to laps. After the last installment, the contract will become a vanilla

option.

Installment options are traded in foreign currency market between banks and corporations.

Several contracts can be considered as installment options such as: some life insurance contracts,

capital investment projects, installment warrant, some contracts in pharmacy and employee

stock options [7, 18, 20, 27, 28, 31], respectively.

There are a lot of methods to price option contracts. Now, we briefly introduce some of the

most important methods. Boyle [9] and Boyle et al. [10] used Monte Carlo method for pricing

options. Brenann and Shwarz introduced finite difference method for valuing American option

[11]. For solving option pricing problem, Cox, Ross and Rubinstein applied lattice method [17].

Penalty and front fixing methods were used by Nielsen et al. [30] for pricing American option

in continuous time. Zvan et al. used penalty method to price American option under stochastic

volatility model in discrete time [34]. Finite element and finite volume methods were applied by

Allegretto et al. [1] and Wang et al. [32, 33] to value option contracts, respectively. Geske and

Johnson solved American put option by Richardson extrapolation [21]. For pricing American
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option, Baron-Adesi and Whaly applied an analytic approximation method [5]. Analytical

method of lines was used by Carr and Faguet [14] to value American option problem. Huang et

al. introduced integral equation approach for pricing and hedging American option [23]. Broadi

and Detemple used capped option approximation for valuing American options [12].

In the case of continuous installment options a few work exists. Ciurlia and Roko applied

the multi piece exponential function (MEF) to solve the free boundary problem arisen from the

American continuous installment option [16]. European and American continuous-installment

options are investigated using Laplace-Carson transform by Kimura in [25] and [26], respectively.

In [15] Ciurlia priced European continuous installment options using Monte Carlo approach.

Alobaidi used the integral transform to price European continuous installment options [3]. She

also analyzed the behavior of the price of European installment options near expiry [2]. Perpetual

American continuous installment option was studied by Ciurlia and Caperdoni [13].

Setting foreign currency exchange rate as underlying asset, we consider the installment option.

In this paper, a front fixing method for solving free boundary problems will be introduced for

valuing European installment option. In this technique, the fee boundary problem is transformed

to a fixed boundary problem, in which allows us to discretize the problem by the use of finite

difference method.

The rest of the paper is organized as follows: Section 2 presents the modeling of European

continuous installment option under Black-Scholes model. In section 3 the front fixing method

is applied to solve the nonlinear parabolic partial differential governing the European continuous

installment call option. In Section 4, finite difference is applied to approximate the problem.

In Section 5, numerical results for the price of European continuous installment call option are

computed and the graphs of the stopping boundary are depicted.

2. The model

In this section, we consider foreign currency exchange rate under Black-Scholes model [8, 29]

and model installment option on this asset. The Black-Scholes model assumes that the risk-

neutral process of the underlying asset price evolves according to the stochastic differential

equation (SDE):

dSt = (rd − rf )Stdt+ σStdWt, (1)

where rd is the domestic risk-free interest rate, rf is the foreign risk-free interest rate, σ is

volatility and Wt is the Wiener process. Suppose that V (St, t; q) is the price of a European

continuous-installment option. By Ito’s lemma, we have

dVt = (
∂Vt

∂t
+

1

2
σ2S2

t

∂2Vt

∂S2
t

+ (rd − rf )St
∂Vt

∂St
− q)dt+ σSt

∂Vt

∂St
dWt, (2)

where q is the rate of installment paid by the option holder per unit time. Next, we set up a

portfolio consisting of the continuous-installment option and −∆ units of the underlying asset.

Define Πt as the value of the portfolio, i.e,

Πt = Vt −∆St. (3)

The change in the value of this portfolio in a small time interval is given by

dΠt = dVt −∆dSt −∆(Strfdt). (4)
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Substituting (1) and (2) into (4) yields

dΠt = (
∂Vt

∂t
+

1

2
σ2S2

t

∂2Vt

∂S2
+(rd − rf )S(

∂Vt

∂S
−∆)

− q −∆Strf )dt+ σSt(
∂Vt

∂S
−∆)dWt.

To make the portfolio riskless, we choose ∂Vt
∂S = ∆. Then,

dΠt = (
∂Vt

∂t
+

1

2
σ2S2

t

∂2Vt

∂S2
− Strf

∂Vt

∂S
− q)dt. (5)

On the other hand, in the absence of arbitrage opportunities, this riskless portfolio must earn

the return rd,

dΠt = rdΠtdt. (6)

Plugging from (3) and (5) into (6), we obtain

∂Vt

∂t
+

1

2
σ2S2

t

∂2Vt

∂S2
+ (rd − rf )S

∂Vt

∂S
− rdVt = q.

Noting that q is the rate of installment, it must be positive. For q = 0, the above parabolic

partial differential equation becomes the equation corresponding to European vanilla options.

3. Front fixing method

Let c(St, t; q) be the value of the European installment call option with the maturity T , the

exercise price K and the payoff function max(ST − K, 0). In this case an optimal stopping

problem arises because of the opportunity to terminate the contract at any time t ∈ [0, T ].

Hence, one should find such points (St, t) that optimally terminates the contract. The value of

call option can be computed as the solution of the following optimal time stopping problem[25]

c(St, t; q) = ess supτ∈[t,T ]E[χ{τ≥T}e
−rd(T−t)max(ST −K, 0)

− q

rd
(1− e−r(τ∧T−t))|Ft],

where τ ∧T = min(τ, T ) and (Ω, (Ft)t≥0,Ft,P) is a filtered probability space and τ is a stopping

time of its filtration. The time at which the above relation gets its supremum is called an optimal

stopping time τ ∈ [0, T ]. The domain of definition is D = [0, T ] × [0,∞). Let us denote the

stopping region and the continuation region by S and C, respectively. Then, the stopping region

is

S = {(St, t) ∈ D | c(St, t; q) = 0}.

The optimal stopping time τ∗ is characterized by

τ∗ = inf{τ ∈ [t, T ]|(Sτ , τ) ∈ S}.

Since the continuation region is the complement of the stopping region in D, it is given by

C = {(St, t) ∈ D | c(St, t; q) > 0}.

The boundary at which the regions S and C separated from each other is called stopping or free

boundary

Sf (t) = inf{St ∈ [0,∞) | c(St, t; q) > 0}, t ∈ [0, T ].
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The valuation of European call can be done through the solution of the following inhomogeneous

partial differential equation [25]

∂c

∂t
+

1

2
σ2S2

t

∂2c

∂S2
+ (rd − rf )S

∂c

∂S
− rdc = q, (7)

subject to the terminal condition

c(ST , T ; q) = max(ST −K, 0), (8)

and along with boundary conditions

lim
St→Sf (t)

c(St, t; q) = 0, lim
St→Sf (t)

∂c

∂S
= 0, lim

St→∞

∂c

∂S
< ∞. (9)

On the free boundary Sf , there are two conditions limSt→Sf (t) c(St, t; q) = 0, limSt→Sf (t)
∂c
∂S = 0

called value matching and smooth pasting conditions, respectively. They show the values of

portfolio and its derivative with respect to S, that is, its delta. These conditions imply that the

initial premium and the slope are continuous across the free boundary.

In this problem there are two unknowns c(St, t; q) and Sf (t). This problem is called free

boundary problem. Solving this type of problem is a challenging work. In this paper, for the

first time, we will apply front fixing method to solve the mentioned free boundary problem.

As seen in formulation (7)-(9), the free or stopping boundary belongs to the domain of the

definition of the problem. Therefore difficulty arises in solving such a problem. In this paper,

we will apply front fixing method [30] to solve the above problem. Nielsen et al. used this

method to solve American put option [30]. The basic idea of front fixing method is to remove

the free boundary from the domain and to add it to the partial differential equation (PDE)

(7). The resulted problem is a nonlinear PDE with known and fixed boundary conditions. Now

consider the following change of variables

x =
S

KSf (t)
, u(x, t; q) = c(S, t; q), (10)

It is simply seen that this transforms the domain S ∈ [Sf (t),∞) to the domain x ∈ [E,∞)

where E = 1
K . Now, we want to reformulate the PDE (7), terminal condition (8) and boundary

conditions (9) in terms of (x, t). By chain rule differentiation, we have

∂c

∂S
=

∂u

∂x

dx

dS
=

1

KSf (t)

∂u

∂x
, (11)

∂2c

∂S2
=

∂

∂S
(
∂c

∂S
) =

1

K2S2
f (t)

∂2u

∂x2
. (12)

Also differentiating u with respect to t yields

∂u

∂t
=

∂c

∂t
+

∂c

∂S

dS

dt
,

Substituting from (11) and considering dS
dt = KxS′

f (t), one can get

∂c

∂t
=

∂u

∂t
− x

S′
f

Sf

∂u

∂x
. (13)

Substituting from (11), (12) and (13) into (7) yields

∂u

∂t
+

1

2
σ2x2

∂2u

∂x2
+ (rd − rf −

S′
f (t)

Sf (t)
)x

∂u

∂x
− rdu = q.
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Clearly, this is a nonlinear partial differential equation. At this time, we reformulate terminal

and boundary conditions. For terminal condition (8), we have

u(x, T ; q) = c(S, T ; q) = max(ST −K, 0) = max(KSf (T )x−K, 0).

In [25], it is proved that Sf (T ) = K. Using this fact and x ≥ 1, one can get

u(x, T ; q) = K(Kx− 1).

Since S = Sf (t) is equivalent to x = E under the change of variables (10), for boundary

conditions (9), the following relations hold

u(E, t; q) = c(Sf (t), t; q) = 0,

∂u

∂x
(E, t; q) = KSf (t)

∂c

∂S
(Sf (t), t; q) = 0,

lim
x→∞

∂u

∂x
= KSf (t) lim

S→∞

∂c

∂S
< ∞.

Therefore the reformulation of the problem (7)-(9) is a nonlinear partial differential equation

with terminal and boundary conditions

∂u

∂t
+

1

2
σ2x2

∂2u

∂x2
+ (rd − rf −

S′
f (t)

Sf (t)
)x

∂u

∂x
− rdu = q, (14)

u(x, T ; q) = K(Kx− 1), (15)

u(E, t; q) = 0, (16)

∂u

∂x
(E, t; q) = 0, (17)

lim
x→∞

∂u

∂x
< ∞. (18)

Comparisons of the boundary conditions in this problem and that of (7)-(9) reveals that the

boundary conditions in this problem does not contain the free or stopping boundary Sf (t) and

this term is translated to nonlinear PDE (14). Solving the above problem is equivalent to find

u(x, t) and Sf (t).

4. Finite difference approximation

In continuation, the finite difference method will be applied to solve the above problem. In

this method, the derivatives in the PDE (14) are approximated by difference schemes. To apply

finite difference method to the above problem, we need to bound the domain of the mentioned

problem. Let x∞ be sufficiently large number. This value plays the role of ∞ in the problem

(14)-(18). For the boundary condition (18), the Neumann boundary conditions at x∞ is defined

by

∂u

∂x
(x∞, t) =

∂

∂x
(K(Kx− 1))|x=x∞ = K2.

Let M,N > 0 be integer numbers and define

h =
x∞ − E

M + 1
, k =

T

N + 1
,

xi = E + ih, i = 0, 1, · · · ,M + 1,

tj = jk, j = 0, 1, · · · , N + 1.
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Also assume that

uji ≈ u(xi, tj), 0 ≤ i ≤ M + 1, 0 ≤ j ≤ N + 1,

Sj
f ≈ Sf (tj), 0 ≤ j ≤ N + 1.

At this moment, the partial derivatives in (14) will be approximated by difference schemes. At

first, for time derivatives, we apply the schemes

∂u

∂t
(xi, tj) ≈

uj+1
i − uji

k
, 0 ≤ i ≤ M + 1, 0 ≤ j ≤ N,

S′
f (tj) ≈

Sj+1
f − Sj

f

k
, 0 ≤ j ≤ N.

Also for partial derivatives in x, we have

∂2u

∂x2
(xi, tj) ≈

uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2
, 0 ≤ i ≤ M + 1, 0 ≤ j ≤ N,

∂u

∂x
(xi, tj) ≈

uj+1
i+1 − uj+1

i−1

h2
, 0 ≤ i ≤ M + 1, 0 ≤ j ≤ N.

Substituting these relations in (14) yields

uj+1
i − uji

k
+

1

2
σ2x2i

uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2

+ (rd − rf −
Sj+1
f − Sj

f

kSj+1
f

)xi
uj+1
i+1 − uj+1

i−1

2h
− rdu

j
i = q.

This scheme is called explicit finite difference scheme for equation (14). A simple calculation,

for 0 ≤ i ≤ M + 1, yields

uji − λj+1
i Sj

f = αiu
j+1
i−1 + βiu

j+1
i + γiu

j+1
i+1 − kq, j = N,N − 1, · · · , 0, (19)

where

λj+1
i =

xi

2hSj+1
f

(uj+1
i+1 − uj+1

i−1 ),

αi =
1

2
σ2x2i

k

h2
− xi(rd − rf − 1

k
)
k

2h
, (20)

βi = 1− σ2x2i
k

h2
− krd, (21)

γi =
1

2
σ2x2i

k

h2
+ xi(rd − rf − 1

k
)
k

2h
. (22)

The discretization of the terminal condition (15) is given by

uN+1
i = K(Kxi − 1), i = 0, 1, · · · ,M + 1.

Moreover discretization of boundary conditions (16)-(18), for 0 ≤ j ≤ N + 1, yields

uj0 = 0,
uj1 − uj−1

2h
= 0,

ujM+2 − ujM
2h

= K2. (23)

Therefore we have

uj−1 = uj1, ujM+2 = 2K2h+ ujM , j = 0, 1, · · · , N + 1. (24)
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Now, we want to find an explicit formula for determining the location of the stopping boundary.

Substituting i = 0 into (19), one can get

uj0 − λj+1
0 Sj

f = α0u
j+1
−1 + β0u

j+1
0 + γ0u

j+1
1 − kq.

Plugging uj0 and uj+1
−1 from (23) and (24), respectively, one can obtain

− λj+1
0 Sj

f = (α0 + γ0)u
j+1
1 − kq. (25)

On the other hand

λj+1
0 =

x0

2hSj+1
f

(uj+1
1 − uj+1

−1 ) = 0.

Substituting this relation into (25) yields

uj+1
1 =

kq

α0 + γ0
, j = N,N − 1, · · · , 0. (26)

Plugging i = 1 in (19), we have

uj1 − λj+1
1 Sj

f = α1u
j+1
0 + β1u

j+1
1 + γ1u

j+1
2 − kq.

Substituting uj0 and uj+1
1 from (23) and (26), respectively, one can get

Sj
f =

kq(1− β1 + α0β0) + γ1u
j+1
2

λj+1
1 (α0 + γ0)

, j = N,N − 1, · · · , 0, (27)

where

λj+1
1 =

x1

2hSj+1
f

(uj+1
2 − uj+1

0 ) =
x1u

j+1
2

2hSj+1
f

.

Note that, λj+1
1 depends on the values computed from time step tj+1. Solving the problem will

be done backward, then when we are at time step tj the values at time step tj+1 have been

computed. Plugging i = M + 1 in (19), for j = N,N − 1, · · · , 0, we have

ujM+1 − λj+1
M+1S

j
f = αM+1u

j+1
M + βM+1u

j+1
M+1 + γM+1u

j+1
M+2 − kq.

Now, substituting uj+1
M+2 from (24), for j = N,N − 1, · · · , 0, yields

ujM+1 − λj+1
M+1S

j
f = (αM+1 + γM+1)u

j+1
M + βM+1u

j+1
M+1 + (2K2hγM+1 − kq),

where

λj+1
M+1 =

xM+1

2hSj+1
f

(uj+1
M+2 − uj+1

M ).

Using the fact that xM+1 = x∞ and substituting uj+1
M+2 from (24), one can obtain

λj+1
M+1 =

x∞K2

Sj+1
f

.

Now, to compute the price of European installment call option at (xi, tj) and to find the location

of free or stopping boundary, we use (19) and (27), respectively. Therefore to compute the

mentioned values, one can develop the following algorithm:

(1) Set uN+1
i = K(Kxi − 1) for 0 ≤ i ≤ M + 1.

(2) Compute uj0 = 0 for 0 ≤ j ≤ N + 1 and set SN+1
f = K.

(3) Compute αi, βi and γi, for 0 ≤ i ≤ M + 1, using (20)-(22).

(4) For j = N,N − 1, · · · , 0 compute:
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•

λj+1
1 =

x1u
j+1
2

2hSj+1
f

,

Sj
f =

kq(1− β1 + α0β0) + γ1u
j+1
2

λj+1
1 (α0 + γ0)

.

• For i = 2, 3, · · · ,M compute:

λj+1
i =

xi

2hSj+1
f

(uj+1
i+1 − uj+1

i−1 ),

uji − λj+1
i Sj

f = αiu
j+1
i−1 + βiu

j+1
i + γiu

j+1
i+1 − kq.

• For i = M + 1 compute:

λj+1
M+1 =

x∞K2

Sj+1
f

,

ujM+1 − λj+1
M+1S

j
f = (αM+1+γM+1)u

j+1
M

+ βM+1u
j+1
M+1 + (2K2hγM+1 − kq).

5. Numerical results

In this section, we want to implement the front fixing method using the algorithm presented

in the previous section. As a result, the price of the European installment call option and

the location of the stopping boundary will be computed. To do this, we first determine the

parameters of the problem. Let’s these parameters be given in table 1.

Table 1. Values of parameters

Parameter Value

Maturity T = 0.25, 1

Domestic risk-free interest rate rd = 0.05

Foreign risk-free interest rate rf = 0.04

Volatility σ = 0.2, 0.3

Strike K = 100

In this table, two levels are chosen for maturity, T = 0.25, 1, and for volatility, σ = 0.2, 0.3.

Also, strike price is K = 100 and domestic and foreign risk-free interest rate are rd = 0.05, rf =

0.04, respectively.

Assume also that x∞ = 2. We discretize the domain [0.01, 2] × [0, T ] by step length h = 0.1

and time step k = 0.005. Running the mentioned algorithm, the prices of European installment

call option are computed and these values are reported in table 2− 4.

In these tables, for underlying asset price, three values S0 ∈ {95, 105, 115} are chosen. Then,

for each value of underlying asset, three values for installment rate q ∈ {1, 3, 6} are given. In the

next step, for different values of underlying asset and installment rate, the price of European

installment call option is computed. As it is clear from table 2 to 4, an increase in values of

installment rate causes a decrease in the prices of call options. On the other hand, when q = 0

European installment option becomes European vanilla option. Therefore, one can deduce that
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Table 2. Installment call option prices for σ = 0.2 and T = 0.25

q S0 Price

1 95 0.5127

105 5.0855

115 11.6483

3 95 0.3114

105 4.4297

115 10.9595

6 95 0.5836

105 3.8675

115 9.3642

Table 3. Installment call option prices for σ = 0.2 and T = 1

q S0 Value

1 95 3.7039

105 8.3959

115 14.8574

3 95 2.2288

105 6.6340

115 12.9665

6 95 0.6772

105 4.2746

115 10.2556

Table 4. Installment call option prices for σ = 0.3 and T = 0.25

q S0 Price

1 95 2.3564

105 7.0559

115 13.5540

3 95 2.1363

105 6.4596

115 12.8486

6 95 2.1454

105 5.7577

115 11.2565

the premium of European vanilla call option is larger than the premium of European installment

call option. But as a whole, the sum of the premium and the installments paid for European

installment option is larger than the premium of the European vanilla option.

In figures 1 − 3, stopping boundaries are depicted for q = 6, q = 9 and q = 12, respectively.

It is seen that the stopping boundary is an increasing function of installment rate q. As it is

clear from these figures, stopping boundary is not monotone with respect to time t but it is a



232 TWMS J. PURE APPL. MATH., V.8, N.2, 2017

Table 5. Installment call option prices σ = 0.3 and T = 1

q S0 Price

1 95 7.4041

105 12.1843

115 18.6494

3 95 5.8452

105 10.3411

115 16.7585

6 95 6.1713

105 4.2754

115 13.9613

convex function of t. Moreover, stopping boundary curves corresponding to higher installment

rate q are above the curves with lower installment rate. This proves that the termination of the

contract is possible only for higher values of the underlying asset price when installment rate

increases. In other word, since the stopping boundary is the critical asset price below which it is

optimal to terminate the contract, then the least asset price to terminate the contract increases.

Figure 1. Stopping boundary Sf (t) for q = 6

Figure 2. Stopping boundary Sf (t) for q = 9
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Figure 3. Stopping boundary Sf (t) for q = 12

6. Conclusions

In this paper, the front fixing method is applied in combination with finite difference method

to value European installment option. One of the advantages of front fixing is that it transforms

the free or stopping boundary problem into a fixed boundary problem. Therefore, this technique

is quite appropriate to price European installment call option which has a stopping boundary.

Therefore, one can get the price of this type of option and its stopping boundary simultaneously

without extra time. It is shown that the value of European continuous installment call option

on foreign currency exchange rate has been obtained. Also, the graph of the stopping boundary

was computed by front fixing method. One can conclude that this is an efficient method for

valuing option problems with free boundary.

References

[1] Allegretto, W., Lin, Y., Yang, H., (2001), Finite element error estimates for a nonlocal problem in American

option valuation, SIAM J. Numer. Anal., 39 , pp.834-857.

[2] Alobaidi, G., Mallier, R., (2006), Installment options close to expiry, Journal of Applied Mathematics and

Stochastic Analysis, Article ID 60824, pp.1-9.

[3] Alobaidi, G., Mallier, R., Deakin, S., (2004), Laplace transforms and installment options, Mathematical

Models and Methods in Applied Sciences, 14 , pp.1167-1189.

[4] Alobaidi, G., Mallier, R., Mansi, S., (2011), Laplace Transforms and Shout Options, Acta Math. Univ.

Comenianae, LXXX(1), pp.79-102.

[5] Barone-Adesi, G., Whaley, R.E., (1987), Efficient analytic approximation of American option values, Journal

of Finance, 42, pp.301-320.

[6] Ben-Ameur, H., Breton, M., François, P., (2005), Pricing ASX installment warrants under GARCH, Working

Paper G-2005-42, GERAD, Montreal, QC, Canada.

[7] Ben-Ameur, H., Breton, M., François, P., (2005), Pricing ASX installment warrants under GARCH, Working

Paper G-2005-42, GERAD.

[8] Black, F., Scholes, M., (1973), The pricing of options and corporate liabilities, The Journal of Political

Economy, 81(3), pp. 637-654.

[9] Boyle, P., (1977), Options: A Monte Carlo Approach, Journal of Financial Economics, 4(3), pp.323-338.

[10] Boyle, P., Broadie, M., Glasserman, P., (1997), Monte Carlo methods for security pricing, Journal of Economic

Dynamics & Control, 21, pp.1267-1321.

[11] Brennan M. J., Schwartz E. S., (1977), The valuation of American put options, The Journal of Finance,

32(2), pp.449-462.

[12] Broadie, M., Detemple, J., (1996), American Option valuation: New bounds, approximations, and a com-

parison of existing methods, Rev. Fin. Stud. 9, pp.1211-1250.



234 TWMS J. PURE APPL. MATH., V.8, N.2, 2017

[13] Caperdoni, C., Ciurlia, P., (2004), Pricing of perpetual American continuous-installment options, Working

Paper, Universit‘a degli Studi Milano-Bicocca, Milan, Italy.

[14] Carr, P., Faguet, D., (1994), Fast Accurate Valuation of American Options, Cornell University working paper.

[15] Ciurlia, P., (2011), Valuation of European continuous-installment options, Computers and Mathematics with

Applications, 62, pp.2518-2534.

[16] Ciurlia, P., Roko, I., (2005), Valuation of American continuous-installment options, Computational Econom-

ics, 25, pp.143-165.

[17] Cox J., Ross S., Rubinstein M., (1979), Option Pricing: A simplifed Approach, Journal of Financial Eco-

nomics, 7, pp. 229-264.

[18] Davis, M., Schachermayer, W., Tompkins, R., (2001), Pricing, no-arbitrage bounds and robust hedging of

installment options, Quantitative Finance, 1, pp.597-610.

[19] Davis, M., Schachermayer, W., Tompkins, R., (2002), Installment options and static hedging, Journal of Risk

Finance, 3, pp.46-52.

[20] Dixit A. K., Pindyck R. S., (1994), Investment Under Uncertainty, Princeton University Press, Princeton,

New Jersey.

[21] Geske, R., Johnson, H.E., (1984), The American put option valued analytically, Journal of Finance, 34,

pp.1511-1524.
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